Tr{Ceng Lou}

Study Notes

Briefing: Quantum Adiabatic Search (2001)

In this post, a quantum adiabatic method applied to search problem is summarized and commented. All the following context is based on $\rm Quantum \, Search \, by \, Local \, Adiabatic \, Evolution$ from J$\acute{e}$r$\acute{e}$mie Roland and Nicolas J. Cerf.

Adiabatic Theorem

Given a time dependent Hamiltonian $H(t)$, let $\vert E_k \, ; t \rangle$ be the eigenstate of $H(t)$ such that:

\begin{eqnarray} && H(t)|E_k \, ; t\rangle = E_k(t)|E_k \, ; t\rangle \end{eqnarray}

where $E_k$ denotes the k-th eigenvalue of the Hamiltonian. Also, define the minimum eigengap $g_{min}$ as:

\begin{eqnarray} && g_{min} = \mathop{\min}_{0 \leq t \leq T}|E_1(t)-E_0(t)| \end{eqnarray}

Then one version of the adiabatic theorem states that if $g_{min}$ within the evolution time $T$ is not too small (compared to the variation of the Hamiltonian), then the initial state $\vert E_0 \, ; t\rangle$ evolves to $\psi(T)$ that’s close to $\vert E_0 \, ; T\rangle$. Intuitively, larger eigengap implies less quantum transition from base state to the first activated state, and thus the wave fuction “stay” at the base state throughout the evolution.

Formally, the variational quantity of $H$ is denoted by $\langle \frac{dH}{dt} \rangle_{1,0}$ as:

\begin{eqnarray} && \langle \frac{dH}{dt} \rangle_{1,0} = \langle E_1;t | \frac{dH}{dt}|E_0;t\rangle \end{eqnarray}

Then provided that

\begin{eqnarray} && \frac{\langle \frac{dH}{dt}\rangle_{1,0}}{g^2_{min}} \leq \epsilon \end{eqnarray}

one could evolve the state $\vert E_0;0\rangle$ toward state $\psi(T)$ such that:

\begin{eqnarray}
&& |\langle E_0;T|\psi(T)|^2 \geq 1- \epsilon^2 \end{eqnarray}

A construction of an adiabatic search algorithm

Adiabatic thereom can be appllied to construct a quantum search algorithm. Consider a problem to find $\vert m \rangle$ out of $N$ computational basis. Let $\vert \psi_0 \rangle$ be a uniform superposition of computational basis:

\begin{eqnarray} && |\psi_0\rangle = \frac{1}{\sqrt{N}}\sum^N_{i=1}|i\rangle \end{eqnarray}

Define two Hamiltonians $H_0$ and $H_m$ and their time dependent interpolation $H(t)$ as:

\begin{eqnarray} && H_0 = I - |\psi_0\rangle\langle\psi_0| \newline && H_m = I - |m\rangle\langle m| \newline && H(t) = (1-t/T)H_0 + t/T H_m \end{eqnarray}

Note that $\vert\psi_0\rangle$ and $\vert m\rangle$ are the base states of $H_0$ and $H_m$. To have the adiabatic theorem hold, one need to impose the condition on the only adjustable parameter $T$. First, solve the eigen problem of $H(t)$:

\begin{eqnarray} && H(t)|E_k ; t\rangle = E_k |E_k; t\rangle \newline && (I-(1-t/T)|\psi_0\rangle\langle \psi_0|-t/T|m\rangle\langle m|)|E_k ; t\rangle = E_k |E_k; t\rangle \newline \end{eqnarray}

let $a_k=\langle\psi_0\vert E_k;t\rangle$, $b_k=\langle m \vert E_k;t\rangle$, and note that $\langle m \vert \psi_0\rangle = \frac{1}{\sqrt{N}}$, one obtain the following relations by applying the inner product of $\vert m\rangle$ and $\vert\psi_0\rangle$ to the above equation:

\begin{eqnarray} && (t/T-E_k)a_k = t/T\frac{1}{\sqrt{N}}b_k \newline && (1-t/T-E_k)b_k = (1-t/T)\frac{1}{\sqrt{N}}a_k \end{eqnarray}

Solving the eigenvalue, with $s = t/T$ one obtain the (degenerate) eigevalue of $H(t)$:

\begin{eqnarray} && E_0 = \frac{1}{2}(1-\sqrt{4(1-\frac{1}{N})s^2-4(1-\frac{1}{N})s+1}) \newline && E_1 = \frac{1}{2}(1+\sqrt{4(1-\frac{1}{N})s^2-4(1-\frac{1}{N})s+1}) \end{eqnarray}

Then the eigengap $g$ is \begin{eqnarray} && g = \sqrt{1-4\frac{N-1}{N}s(1-s)} \end{eqnarray} with minimum reached at $s=1/2$ with $g_{min}=1/\sqrt{N}$.

Following up with the calculation of the variational quantity $\langle\frac{dH}{dt}\rangle_{1,0}$:

\begin{eqnarray} && \langle\frac{dH}{dt}\rangle_{1,0} = \langle E_1;t|\frac{1}{T}(H_m - H_0)|E_0;t\rangle \newline && = \langle E_1;t|\frac{1}{T}(|\psi_0\rangle\langle \psi_0| - |m\rangle \langle m|)|E_0;t\rangle \newline \end{eqnarray}

It can be proven that the absolute value of this quantity is less than $\frac{1}{T}$. Thus, the adiabatic condition reads:

\begin{eqnarray} && T \geq N/\epsilon \end{eqnarray}

which yields no benefit over classical algorithm.

A variant of the interpolation rate s(t)

To achieve quantum speedup, notice that the adiabatic condition can be applied to a infinitesimal scale of time. That is, let $s(t)$ be an unknown function of $t$, and then impose the adiabatic condition:

\begin{eqnarray} &&\frac{ds}{dt} \leq \epsilon \frac{g^2(t)}{|\langle\frac{dH}{ds}\rangle_{1,0}|} \end{eqnarray}

Along with previous calculation of the eigengap $g$, one can choose the following to have the local adiabatic condition hold : \begin{eqnarray} && \frac{ds}{dt} = \epsilon g^2(t) \end{eqnarray}

Solving $s(t)$ with boundary condition $s(0)=0, s(T)=1$, one obtain \begin{eqnarray} && T = \frac{\pi}{2\epsilon} \sqrt{N} \end{eqnarray} by taking $s = 1$ and $N \gg 1$. This achieve the Grover’s search performance as wanted.

To prove the optimality of the choice $s(t)$, the search problem can be solved if the evolved answers of different target are sufficiently discriminable. That is, let $\vert\psi_m ;t \rangle$ and $\vert\psi_{m’};t\rangle$ be the volved state after time $t$ for search target $m$ and $m’$ respectively, we require that:

\begin{eqnarray} && 1- |\langle \psi_{m}; T| \psi_{m’}; T\rangle|^2 \geq \delta \; \end{eqnarray}

From Schrodinger’s equation, we have the followings:

\begin{eqnarray} && i \frac{d}{dt}|\psi_m ; t\rangle = (I - (1-s)|\psi_0\rangle\langle\psi_0| - s|m\rangle\langle m|)|\psi_m;t\rangle \newline && i \frac{d}{dt}|\psi_m’ ; t\rangle = (I - (1-s)|\psi_0\rangle\langle\psi_0| - s|m’\rangle\langle m’|)|\psi_{m’};t\rangle \end{eqnarray}

with $\vert \psi_m ; 0 \rangle = \vert \psi_{m} ; 0 \rangle = \vert \psi_0 \rangle$ for some initial configuration. Now take the derivative of the objective with respect to the evolution time :

\begin{eqnarray} && \frac{d}{dt}[1 - |\langle \psi_m ; t| \psi_{m’} ; t \rangle |^2 ] \newline && = - \frac{d}{dt} 2 \langle \psi_m ; t| \psi_{m’} ; t \rangle \langle \psi_{m’} ; t| \psi_{m} ; t \rangle \newline && = {\rm Im} [\langle \psi_{m} ; t| (-s| m\rangle \langle m| + s |m’ \rangle\langle m’|) | \psi_{m’} ; t\rangle \langle \psi_{m’} ; t| \psi_{m} ; t \rangle] \newline && \leq 2 |\langle \psi_{m} ; t| (-s| m\rangle \langle m| + s |m’ \rangle\langle m’|) | \psi_{m’} ; t\rangle| \; | \langle \psi_{m’} ; t| \psi_{m} ; t \rangle| \newline && \leq 2[ |\langle \psi_{m} ; t| (-s| m\rangle \langle m|) | \psi_{m’} ; t\rangle | + |\langle \psi_{m} ; t| (-s| m’\rangle \langle m’|) | \psi_{m’} ; t\rangle |]
\end{eqnarray}

Let $H_{m} = -s \vert m \rangle \langle m \vert $, summing the above objective for all $m$ and $m’$, we got:

\begin{eqnarray} && \frac{d}{dt} \sum_{m, m’ = 1}^{N} [1 - |\langle \psi_m ; t| \psi_{m’} ; t \rangle |^2 ] \newline && \leq 4 \sum_{m, m’ = 1}^{N} |\langle \psi_m ; t| H_{m} | \psi_{m’} ; t \rangle | \newline && \leq 4 \sum_{m, m’ = 1}^{N} \Vert H_{m}| \psi_{m} ; t \rangle \Vert \Vert \psi_{m’} \Vert \newline && = 4 N \sum_{m=1}^{N} \Vert H_{m}| \psi_{m} ; t \rangle \Vert
\end{eqnarray}

To upper bound the last term, notice that $\sum_{m=1}^{N} \Vert H_m \vert \psi_m ; t\rangle\Vert^2 = s^2$ due to normalization condition. Thus by Cauchy inequality,

\begin{eqnarray} && \frac{d}{dt} \sum_{m, m’ = 1}^{N} [1 - |\langle \psi_m ; t| \psi_{m’} ; t \rangle |^2 ] \newline && \leq 4 N \sum_{m=1}^{N} \Vert H_{m}| \psi_{m} ; t \rangle \Vert \leq 4 N \sqrt{N} s
\end{eqnarray}

Notice that the above derivative is taken to leverage the Schrodinger’s equation. Finally, we discard the derivative and integrate the both side of the inequality:

\begin{eqnarray} && \sum_{m, m’ = 1}^{N} [1 - |\langle \psi_m ; t| \psi_{m’} ; t \rangle |^2 ] \leq 4N \sqrt{N} \int_{0}^{T} s(t) dt \leq 4N \sqrt{N} T \end{eqnarray}

With $\sum_{m, m’ = 1}^{N} [1 - \vert \langle \psi_m ; t \vert \psi_{m’} ; t \rangle \vert ^2 ] \geq N^2\delta$, we’ve proven that $T \geq O(\frac{\sqrt{N}}{\delta})$.

Comment

The original work consider the Hamiltonian with a certain form. Perhaps it’s possible to derive search algorithm by other interploations of Hamiltonian. Perhaps a class of Hamiltonian would guarantee speedup.

Also, if take the adiabatic results to the reverse direction, what makes quantum evolution an adiabatic one ? Can similar result be applied to other update dynamic, like recent gradient descent in machine learning ?